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Abstract

We simulate edge plasmas in NSTX double-null divertor configurations with the UEDGE two-dimensional
fluid code. The carbon impurity density in the core plasma and total radiated power increase with the core
heating power and the magnitude of the physical and chemical sputtering in the divertor. Up/down plasma
asymmetries are generated by classical cross-field particle drifts. With the standard toroidal magnetic field
direction (ion VB drift toward the lower x-point) the highest density occurs at the lower inboard divertor
plate and the highest heat flux at the upper outboard divertor plate. Simulations of 3-d edge plasma
turbulence with the BOUT code show that anomalous radial transport at the outboard midplane should be
similar in magnitude for NSTX and DIII-D.

1 Introduction

Core plasma confinement in a tokamak is strongly correlated with properties of the edge
plasma. In this report we present results of edge plasma simulations for NSTX in double
null divertor configurations. The simulations use the UEDGE two-dimensional fluid code [1].
Experimental measurements of the edge plasma in NSTX are not yet comprehensive enough
to make meaningful comparisons with the simulation, but the simulation results should be
a reliable guide to edge plasma behavior because the UEDGE code has been extensively
benchmarked against several other tokamak devices. For the first series of simulations in
this report we examine the global properties of the edge plasma as a function of the total
heating power into the plasma and the sputtering yield at the plasma-facing surfaces in
the divertor. A second series of simulations takes a look at up/down asymmetries due
to classical cross-field drifts. Finally, we test the assumption of similar anomalous radial
transport in NSTX and DIII-D with simulations of these configurations using the BOUT
3-d fluid turbulence code [2].

2 Model

The UEDGE code solves for the density, temperature and flow velocity of the plasma and
neutrals in the edge region near the separatrix, as illustrated in Fig. 1. The simulation
mesh is based on flux surfaces from MHD equilibria calculated by the EFIT code. The
steady state solutions depend on the boundary conditions and the transport models for
both plasma and neutrals. The model assumes classical plasma transport along field lines
and spatially uniform anomalous radial transport coefficients whose values are derived from
benchmarking with DIII-D data. We specify fixed plasma density at the innermost core
flux surface of the mesh, and recycling boundary conditions for hydrogenic plasma at the
walls and divertor plates. Physical and chemical sputtering at the carbon divertor plates
and radial mesh boundaries are modeled by a modified form of the sputtering yields given
by Haasz and Davis [3] with reduced yield at low ion impact energies. The .total heating



power is specified in terms of the total electron and ion power crossing the innermost core
flux surface. The ion and electron temperatures at the outer walls are fixed at 2 eV; in the
private flux regions we specify zero heat flux.

3 Sputtering

We investigate the expected radiated power and the flow of intrinsic (carbon) impurities 
the closed flux surfaces as a function of the sputtering yield and total heating power. For this
series of simulations we assume up/down symmetric plasmas, consistent with a magnetically
balanced double-null configuration and negligible cross-field drifts. To examine the effect of
uncertainty in the wall conditions, e.g,, due to boronization, we introduce a scaling factor,
fH~sz, for the sputtering yield relative to the Haasz and Davis model. Both physical and
chemical sputtering yields are scaled by a common multiplicative factor. The variation of
the radiation and core impurity content with this multiplicative factor is shown in Fig. 2.
With 1 MW of input power we find the total radiated power increases from 15% with no
sputtering source to about 45% of the input power when the sputtering yield multiplier is
increased to 0.6; the carbon density rises to 3% of the electron density in the core. At higher
input powers, as shown in Fig. 3, the core carbon content increases to near 10% and may
indicate a need for wall conditioning to control the sputtering source.

4 Cross-Field Drifts

Up/down plasma asymmetries in a double-null configuration can be due to magnetic im-
balance, cross-field drifts and other factors. In this report we investigate the influence of
cross-field drifts on the up/down plasma asymmetry for a magnetically balanced double-
null configuration in NSTX. These drifts have a strong effect in conventional single-null
tokamaks [4] and may also be important in spherical tokamaks. Figures 4 and 5 compare
simulations with and without cross-field drifts. The toroidal magnetic field direction is such
that the ion VB drift is toward the lower x-point. In Fig. 4 the highest density occurs at
the lower inboard plate; this is due to a significant E x B particle flux through the lower
private flux region from the outboard to the inboard plates. In the upper divertor, the
E x B particle flux is from the inboard to the outboard plate, so the density is higher at the
outboard plate. The heat flux at the outboard plates is higher than at the inboard plates
because most of the power enters the SOL through the outboard half of the separatrix. In
this simulation, 85% of the total power flows to the outer SOL from the core. The maximum
heat flux, 3.5 MW/m2, occurs at the upper plate due to a convective heat flux component
which correlates with higher density at the upper plate. At higher input power the effect of
cross-field drifts will be even stronger due to higher electron temperatures and associated
electric fields.

5 Turbulence

In our UEDGE modeling of the NSTX edge plasma we have chosen anomalous radial trans-
port coefficients based on previous benchmarking with experimental data from DIII-D. This
similarity assumption is tested by comparing 3-d simulations of edge plasma turbulence in
NSTX and DIII-D using the BOUT code. Simulations in the two magnetic configurations
are run with a common plasma background from UEDGE. We find that turbulent fluctua-
tion levels, fi/n, at the outboard midplane are slightly higher in NSTX than in DIII-D. Also,
the turbulence at the midplane extends radially over a somewhat larger region of the edge
plasma, but the eddy size of the fluctuating density is about three times larger on DIII-D
than on NSTX at the midplane. The net result is that the anomalous radial diffusivity for
particles and energy at the midplane is similar (,-, 1 m2sec-1) in DIII-D and NSTX, but
with significant spatial variation.
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Figure 1: The (orthogonM) edge-plasma mesh for simulation of NSTX balanced double-null
configurations.
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Figure 4: The radial profiles of the plasma density on the divertor plates for a magnetically
balanced NSTX double-null configuration. The total input power to the SOL is t MW and
the core plasma density is 3 × 1019 m-3. The solid curve includes cross-field drifts. The
dashed curve does not.
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Figure 5: The radial profiles of the heat flux on the divertor plates for a magnetically
balanced NSTX double-null configuration. The total input power to the SOL is 1 MW and
the core plasma density is 3 x 1019 m-3. The solid curve includes cross-field drifts. The
dashed curve does not.


